

Reg. No.: 31307105216

J 3281

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2009.

Fourth Semester

Civil Engineering

MA 1251 — NUMERICAL METHODS

(Common to B.E./B.Tech. Mechatronics Engineering, Metallurgical Engineering, Petroleum Engineering, Aeronautical Engineering and Electrical and Electronics Engineering)

(Regulation 2004)

(Common to B.E. (Part-Time) Third Semester Civil Engineering Regulation 2005)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the condition for the convergence of the iteration method for solving $x = \phi(x)$?
- 2. Using Gauss elimination method, solve x + y = 2, 2x + 3y = 5.
- 3. A third degree polynomial passes through (0,-1), (1,1), (2,1) and (3,-2). Find its value at x=4?
- 4. Define the terms interpolation and extrapolation.
- 5. What is the order of the error in trapezoidal rule?
- 6. Write down the formula for $(y')_{x=x_n}$ using Newton's backward difference formula.
- 7. By Taylor series method find y(1.1) given that y' = x + y and y(1) = 0.
- 8. Write down the modified Euler's formula for ODE?
- 9. Obtain the finite difference scheme for solving Laplace equation.
- 10. Write down the explicit scheme to solve the one dimensional wave equation.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Find an approximate root of $x \log_{10} x 1.2 = 0$ by false position method.
 - (ii) Using power method, find the largest eigen value of $A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$ in magnitude and its corresponding eigen vector.(8)

Or

- (b) (i) Find the root of $4x e^x = 0$ that lies between 2 and 3 by Newton's method.
 - (ii) Apply Gauss-Seidal method to solve the following system of equations.

$$20x + y - 2z = 17; \ 3x + 20y - z = -18; \ 2x - 3y + 20z = 25.$$
 (10)

12. (a) (i) Find the cubic polynomial which takes the following values.

x: 0 1 2 3f(x): 1 2 1 10

f(x): 1 2 1 10

Hence find f(4).

(ii) The following values of x and y are given.

x: 1 2 3 4y: 1 2 5 11

Find the cubic splines and evaluate y(1.5) and y'(3.0). (8)

Or

(b) (i) Find the values of y when x = 218 and x = 410 for the given data:

x: 100 150 200 250 300 350 400

y: 10.63 13.03 15.04 16.81 18.42 19.90 21.27

(ii) The following are data from the steam table: (8)

Temperature C°: 140 150 160 170 180

Pressure kgf/cm²: 3.685 4.854 6.302 8.076 10.225

Using Newton's formula, find the pressure of the steam for a temperature of 142°.

(8)

(8)

13. (a) (i) Using the following data, find
$$f'(5)$$
: (10)
$$x: 0 \quad 2 \quad 3 \quad 4 \quad 7 \quad 9$$
$$f(x): \quad 4 \quad 26 \quad 58 \quad 112 \quad 466 \quad 922$$

(ii) Evaluate $I = \int_{0}^{1} \frac{dt}{1+t}$ by Gauss formula with two points, and three points. (6)

Or

(b) (i) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 using Romberg's method. (8)

(ii) Evaluate
$$\int_{0}^{1} \int_{0}^{1} \frac{dx \, dy}{1 + x + y}$$
 by Trapezoidal rule. (8)

14. (a) Determine the value of y(0.4) using Milne's method given $y' = xy + y^2$, y(0) = 1. Use Taylor series method to get the values of y(0.1), y(0.2) and y(0.3).

Or

- (b) Find y(0.1), y(0.2), y(0.3) from $y' = x y^2$ by using Runge-Kutta method of order 4 using step value h = 0.1, and then find y(0.4) by Adam's method. (16)
- 15. (a) Solve $u_{xx} + u_{yy} = 0$ over the square mesh of side 4 units, satisfying the following boundary conditions.
 - (i) $u(0, y) = 0 \text{ for } 0 \le y \le 4$
 - (ii) u(4, y) = 12 + y for $0 \le y \le 4$
 - (iii) $u(x, 0) = 3x \text{ for } 0 \le x \le 4$
 - (iv) $u(x,4) = x^2 \text{ for } 0 \le x \le 4$. (16)

Or

3

(b) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x,0) = \sin \pi x$, $0 \le x \le 1$; u(0,t) = u(1,t) = 0 using Crank - Nicolson method. Carry out the computations for two levels, taking $h = \frac{1}{3}$ and $k = \frac{1}{36}$. (16)

J 3281